Extensions 1→N→G→Q→1 with N=C23 and Q=C3×C3⋊S3

Direct product G=N×Q with N=C23 and Q=C3×C3⋊S3
dρLabelID
C3⋊S3×C22×C6144C3:S3xC2^2xC6432,773

Semidirect products G=N:Q with N=C23 and Q=C3×C3⋊S3
extensionφ:Q→Aut NdρLabelID
C23⋊(C3×C3⋊S3) = C6×C3⋊S4φ: C3×C3⋊S3/C32S3 ⊆ Aut C23366C2^3:(C3xC3:S3)432,761
C232(C3×C3⋊S3) = C2×A4×C3⋊S3φ: C3×C3⋊S3/C3⋊S3C3 ⊆ Aut C2354C2^3:2(C3xC3:S3)432,764
C233(C3×C3⋊S3) = C6×C327D4φ: C3×C3⋊S3/C33C2 ⊆ Aut C2372C2^3:3(C3xC3:S3)432,719

Non-split extensions G=N.Q with N=C23 and Q=C3×C3⋊S3
extensionφ:Q→Aut NdρLabelID
C23.(C3×C3⋊S3) = C3×C6.7S4φ: C3×C3⋊S3/C32S3 ⊆ Aut C23366C2^3.(C3xC3:S3)432,618
C23.2(C3×C3⋊S3) = A4×C3⋊Dic3φ: C3×C3⋊S3/C3⋊S3C3 ⊆ Aut C23108C2^3.2(C3xC3:S3)432,627
C23.3(C3×C3⋊S3) = C3×C625C4φ: C3×C3⋊S3/C33C2 ⊆ Aut C2372C2^3.3(C3xC3:S3)432,495
C23.4(C3×C3⋊S3) = C2×C6×C3⋊Dic3central extension (φ=1)144C2^3.4(C3xC3:S3)432,718

׿
×
𝔽